Mohammed Fayiz Parappan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Learning Subjective Label Distributions via Sociocultural Descriptors
Mohammed Fayiz Parappan | Ricardo Henao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Subjectivity in NLP tasks, _e.g._, toxicity classification, has emerged as a critical challenge precipitated by the increased deployment of NLP systems in content-sensitive domains. Conventional approaches aggregate annotator judgements (labels), ignoring minority perspectives, and overlooking the influence of the sociocultural context behind such annotations. We propose a framework where subjectivity in binary labels is modeled as an empirical distribution accounting for the variation in annotators through human values extracted from sociocultural descriptors using a language model. The framework also allows for downstream tasks such as population and sociocultural group-level majority label prediction. Experiments on three toxicity datasets covering human-chatbot conversations and social media posts annotated with diverse annotator pools demonstrate that our approach yields well-calibrated toxicity distribution predictions across binary toxicity labels, which are further used for majority label prediction across cultural subgroups, improving over existing methods.