Mohammed Asad Karim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Salient Information Prompting to Steer Content in Prompt-based Abstractive Summarization
Lei Xu | Mohammed Asad Karim | Saket Dingliwal | Aparna Elangovan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large language models (LLMs) can generate fluent summaries across domains using prompting techniques, reducing the effort required for summarization applications. However, crafting effective prompts that guide LLMs to generate summaries with the appropriate level of detail and writing style remains a challenge. In this paper, we explore the use of salient information extracted from the source document to enhance summarization prompts. We show that adding keyphrases in prompts can improve ROUGE F1 and recall, making the generated summaries more similar to the reference and more complete. The number of keyphrases can control the precision-recall trade-off. Furthermore, our analysis reveals that incorporating phrase-level salient information is superior to word- or sentence-level. However, the impact on summary faithfulness is not universally positive across LLMs. To enable this approach, we introduce Keyphrase Signal Extractor (SigExt), a lightweight model that can be finetuned to extract salient keyphrases. By using SigExt, we achieve consistent ROUGE improvements across datasets and LLMs without any LLM customization. Our findings provide insights into leveraging salient information in building prompt-based summarization systems.