Mohammadamin Kanaani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Triple-R: Automatic Reasoning for Fact Verification Using Language Models
Mohammadamin Kanaani | Sajjad Dadkhah | Ali A. Ghorbani
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The rise of online social media platforms has made them a popular source of news. However, they are also prone to misinformation and fake news. To combat this, fact-checking is essential to verify the accuracy of claims made on these platforms. However, the existing methods in this field often lack the use of external sources and human-understandable explanations for system decisions. In this paper, we introduce a framework called Triple-R (Retriever, Ranker, Reasoner) that addresses these challenges. The framework uses the Web as an external knowledge source to retrieve relevant evidence for claims and includes a method to generate reasons based on the retrieved evidence for datasets lacking explanations. We then use this modified dataset to fine-tune a causal language model that generates natural language explanations and labels for pairs of retrieved evidence and claims. Our approach aims to improve the transparency and interpretability of fact-checking systems by providing understandable explanations for decision-making processes. We evaluated our method on a popular dataset and demonstrated its performance through an ablation study. The modified dataset is available on the Canadian Institute for Cybersecurity datasets webpage at https://www.unb.ca/cic/datasets/index.html.