Mohammad Makahleh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
JUST-DEEP at SemEval-2022 Task 4: Using Deep Learning Techniques to Reveal Patronizing and Condescending Language
Mohammad Makahleh | Naba Bani Yaseen | Malak Abdullah
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Classification of language that favors or condones vulnerable communities (e.g., refugees, homeless, widows) has been considered a challenging task and a critical step in NLP applications. Moreover, the spread of this language among people and on social media harms society and harms the people concerned. Therefore, the classification of this language is considered a significant challenge for researchers in the world. In this paper, we propose JUST-DEEP architecture to classify a text and determine if it contains any form of patronizing and condescending language (Task 4- Subtask 1). The architecture uses state-of-art pre-trained models and empowers ensembling techniques that outperform the baseline (RoBERTa) in the SemEval-2022 task4 with a 0.502 F1 score.