Mohammad Hossein Manshaei


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Empowering Persian LLMs for Instruction Following: A Novel Dataset and Training Approach
Hojjat Mokhtarabadi | Ziba Zamani | Abbas Maazallahi | Mohammad Hossein Manshaei
Proceedings of the First Workshop on Language Models for Low-Resource Languages

Instruction-tuned large language models have demonstrated remarkable capabilities in following human instructions across various domains. However, their proficiency remains notably deficient in many low-resource languages. To address this challenge, we begin by introducing FarsInstruct: a comprehensive instruction dataset designed to enhance the instruction-following ability of large language models specifically for the Persian language—a significant yet underrepresented language globally. FarsInstruct encompasses a wide range of task types and datasets, each containing a mix of straightforward to complex manual written instructions, as well as translations from the Public Pool of Prompts, ensuring a rich linguistic and cultural representation. Furthermore, we introduce Co-CoLA, a framework designed to enhance the multi-task adaptability of LoRA-tuned models. Through extensive experimental analyses, our study showcases the effectiveness of the FarsInstruct dataset coupled with training by the Co-CoLA framework, in improving the performance of large language models within the Persian context. As of the current writing, FarsInstruct comprises 197 templates across 21 distinct datasets, and we intend to update it consistently, thus augmenting its applicability.