Mohammad Hossein Abbaspour


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
IUST-NLPLAB at SemEval-2024 Task 9: BRAINTEASER By MPNet (Sentence Puzzle)
Mohammad Hossein Abbaspour | Erfan Moosavi Monazzah | Sauleh Eetemadi
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This study addresses a task encompassing two distinct subtasks: Sentence-puzzle and Word-puzzle. Our primary focus lies within the Sentence-puzzle subtask, which involves discerning the correct answer from a set of three options for a given riddle constructed from sentence fragments. We propose four distinct methodologies tailored to address this subtask effectively. Firstly, we introduce a zero-shot approach leveraging the capabilities of the GPT-3.5 model. Additionally, we present three fine-tuning methodologies utilizing MPNet as the underlying architecture, each employing a different loss function. We conduct comprehensive evaluations of these methodologies on the designated task dataset and meticulously document the obtained results. Furthermore, we conduct an in-depth analysis to ascertain the respective strengths and weaknesses of each method. Through this analysis, we aim to provide valuable insights into the challenges inherent to this task domain.