Mohammad Abuzar Shaikh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Self-Supervised Claim Identification for Automated Fact Checking
Archita Pathak | Mohammad Abuzar Shaikh | Rohini Srihari
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

We propose a novel, attention-based self-supervised approach to identify “claim-worthy” sentences in a fake news article, an important first step in automated fact-checking. We leverage aboutness of headline and content using attention mechanism for this task. The identified claims can be used for downstream task of claim verification for which we are releasing a benchmark dataset of manually selected compelling articles with veracity labels and associated evidence. This work goes beyond stylistic analysis to identifying content that influences reader belief. Experiments with three datasets show the strength of our model.