Mirko Oest


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
On the Impact of Reconstruction and Context for Argument Prediction in Natural Debate
Zlata Kikteva | Alexander Trautsch | Patrick Katzer | Mirko Oest | Steffen Herbold | Annette Hautli-Janisz
Proceedings of the 10th Workshop on Argument Mining

Debate naturalness ranges on a scale from small, highly structured, and topically focused settings to larger, more spontaneous and less constrained environments. The more unconstrained a debate, the more spontaneous speakers act: they build on contextual knowledge and use anaphora or ellipses to construct their arguments. They also use rhetorical devices such as questions and imperatives to support or attack claims. In this paper, we study how the reconstruction of the actual debate contributions, i.e., utterances which contain pronouns, ellipses and fuzzy language, into full-fledged propositions which are interpretable without context impacts the prediction of argument relations and investigate the effect of incorporating contextual information for the task. We work with highly complex spontaneous debates with more than 10 speakers on a wide variety of topics. We find that in contrast to our initial hypothesis, reconstruction does not improve predictions and context only improves them when used in combination with propositions.