This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MinxuanFeng
Also published as:
敏萱 冯
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Lemmatization of cuneiform languages presents a unique challenge due to their complex writing system, which combines syllabic and logographic elements. In this study, we investigate the effectiveness of the ByT5 model in addressing this challenge by developing and evaluating a ByT5-based lemmatization system. Experimental results demonstrate that ByT5 outperforms mT5 in this task, achieving an accuracy of 80.55% on raw lemmas and 82.59% on generalized lemmas, where sense numbers are removed. These findings highlight the potential of ByT5 for lemmatizing cuneiform languages and provide useful insights for future work on ancient text lemmatization.
Ancient Chinese texts have no sentence boundaries and punctuation. Adding modern Chinese punctuation to theses texts requires expertise, time and efforts. Automatic sentence segmentation and punctuation is considered as a basic task for Ancient Chinese processing, but there is no shared task to evaluate the performances of different systems. This paper presents the results of the first ancient Chinese sentence segmentation and punctuation bakeoff, which is held at the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) 2024. The contest uses metrics for detailed evaluations of 4 genres of unpublished texts with 11 punctuation types. Six teams submitted 32 running results. In the closed modality, the participants are only allowed to use the training data, the highest obtained F1 scores are respectively 88.47% and 75.29% in sentence segmentation and sentence punctuation. The perfermances on the unseen data is 10 percent lower than the published common data, which means there is still space for further improvement. The large language models outperform the traditional models, but LLM changes the original characters around 1-2%, due to over-generation. Thus, post-processing is needed to keep the text consistancy.
The digitization of ancient books necessitates the implementation of automatic word segmentation and part-of-speech tagging. However, the existing research on this topic encounters pressing issues, including suboptimal efficiency and precision, which require immediate resolution. This study employs a methodology that combines word segmentation and part-of-speech tagging. It establishes a correlation between fonts and radicals, trains the Radical2Vec radical vector representation model, and integrates it with the SikuRoBERTa word vector representation model. Finally, it connects the BiLSTM-CRF neural network.The study investigates the combination of word segmentation and part-of-speech tagging through an experimental approach using a specific data set. In the evaluation dataset, the F1 score for word segmentation is 95.75%, indicating a high level of accuracy. Similarly, the F1 score for part-of-speech tagging is 91.65%, suggesting a satisfactory performance in this task. This model enhances the efficiency and precision of the processing of ancient books, thereby facilitating the advancement of digitization efforts for ancient books and ensuring the preservation and advancement of ancient book heritage.
Abstract Meaning Representation is a sentence-level meaning representation, which abstracts the meaning of sentences into a rooted acyclic directed graph. With the continuous expansion of Chinese AMR corpus, more and more scholars have developed parsing systems to automatically parse sentences into Chinese AMR. However, the current parsers can’t deal with concept alignment and relation alignment, let alone the evaluation methods for AMR parsing. Therefore, to make up for the vacancy of Chinese AMR parsing evaluation methods, based on AMR evaluation metric smatch, we have improved the algorithm of generating triples so that to make it compatible with concept alignment and relation alignment. Finally, we obtain a new integrity metric align-smatch for paring evaluation. A comparative research then was conducted on 20 manually annotated AMR and gold AMR, with the result that align-smatch works well in alignments and more robust in evaluating arcs. We also put forward some fine-grained metric for evaluating concept alignment, relation alignment and implicit concepts, in order to further measure parsers’ performance in subtasks.
This paper presents the results of the First Ancient Chinese Word Segmentation and POS Tagging Bakeoff (EvaHan), which was held at the Second Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) 2022, in the context of the 13th Edition of the Language Resources and Evaluation Conference (LREC 2022). We give the motivation for having an international shared contest, as well as the data and tracks. The contest is consisted of two modalities, closed and open. In the closed modality, the participants are only allowed to use the training data, obtained the highest F1 score of 96.03% and 92.05% in word segmentation and POS tagging. In the open modality, the participants can use whatever resource they have, with the highest F1 score of 96.34% and 92.56% in word segmentation and POS tagging. The scores on the blind test dataset decrease around 3 points, which shows that the out-of-vocabulary words still are the bottleneck for lexical analyzers.
The basic tasks of ancient Chinese information processing include automatic sentence segmentation, word segmentation, part-of-speech tagging and named entity recognition. Tasks such as lexical analysis need to be based on sentence segmentation because of the reason that a plenty of ancient books are not punctuated. However, step-by-step processing is prone to cause multi-level diffusion of errors. This paper designs and implements an integrated annotation system of sentence segmentation and lexical analysis. The BiLSTM-CRF neural network model is used to verify the generalization ability and the effect of sentence segmentation and lexical analysis on different label levels on four cross-age test sets. Research shows that the integration method adopted in ancient Chinese improves the F1-score of sentence segmentation, word segmentation and part of speech tagging. Based on the experimental results of each test set, the F1-score of sentence segmentation reached 78.95, with an average increase of 3.5%; the F1-score of word segmentation reached 85.73%, with an average increase of 0.18%; and the F1-score of part-of-speech tagging reached 72.65, with an average increase of 0.35%.