Minxin Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PlanGPT-VL: Enhancing Urban Planning with Domain-Specific Vision-Language Models
He Zhu | Junyou Su | Minxin Chen | Wen Wang | Yijie Deng | Guanhua Chen | Wenjia Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

In the field of urban planning, existing Vision-Language Models (VLMs) frequently fail to effectively analyze planning maps, which are critical for urban planners and educational contexts. Planning maps require specialized understanding of spatial configurations, regulatory requirements, and multi-scale analysis.To address this challenge, we introduce PlanGPT-VL, the first domain-specific VLM tailored for urban planning maps. PlanGPT-VL employs three innovations:(1) PlanAnno-V framework for high-quality VQA data synthesis,(2) Critical Point Thinking (CPT) to reduce hallucinations through structured verification, and(3) PlanBench-V benchmark for systematic evaluation.Evaluation on PlanBench-V shows that PlanGPT-VL outperforms general-purpose VLMs on planning map interpretation tasks, with our 7B model achieving performance comparable to larger 72B models.