This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MingzheDu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Data contamination hinders fair LLM evaluation by introducing test data into newer models’ training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs’ training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs’ cutoff time and demonstrate that AntiLeak-Bench effectively overcomes this challenge.
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. Its key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
In a technology company, quality of customer service that involves providingtroubleshooting assistance and advice to customers is a crucial asset.Often, insights from historical customer service data are used to make decisions related to future product offerings. In this paper, we address the challenging problem of automatic assignment of product names and software version labels to customer Service Requests (SRs) related to BLIND, a company in the networking domain.We study the effectiveness of state-of-the-art Large Language Models (LLMs) in assigning the correct product name codes and software versions from several possible label options and their “non-canonical” mentions in the associated SR data. To this end, we frame the assignment as a multiple-choice question answering task instead of conventional prompts and devise, to our knowledge, a novel pipeline of employing a classifier for filtering inputs to the LLM for saving usage costs. On our experimental dataset based on real SRs, we are able to correctly identify product name and software version labels when they are mentioned with over 90% accuracy while cutting LLM costs by ~40-60% on average, thus providing a viable solution for practical deployment.