This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MingxuTao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Open-ended question answering requires mod- els to find appropriate evidence to form well-reasoned, comprehensive and helpful answers. In practical applications, models also need to engage in extended discussions on potential scenarios closely relevant to the question. With augmentation of retrieval module, open-source Large Language Models (LLMs) can produce coherent answers often with different focuses, but are still sub-optimal in terms of reliable ev- idence selection and in-depth question analysis. In this paper, we propose a novel Chain-of- Discussion framework to leverage the synergy among multiple open-source LLMs aiming to provide more correct and more comprehensive answers for open-ended QA, although they are not strong enough individually. Our exper- iments show that discussions among multiple LLMs play a vital role in enhancing the quality of answers.
Large language models (LLMs) excel in high-resource languages but struggle with low-resource languages (LRLs), particularly those spoken by minority communities in China, such as Tibetan, Uyghur, Kazakh, and Mongolian. To systematically track the progress in these languages, we introduce MiLiC-Eval, a benchmark designed for minority languages in China, featuring 24K instances across 9 tasks. MiLiC-Eval focuses on underrepresented writing systems. Its parallelism between tasks and languages can provide a faithful and fine-grained assessment of linguistic and problem-solving skills. Our evaluation reveals that open-source LLMs perform poorly on syntax-intensive tasks and multi-script languages. We further demonstrate how MiLiC-Eval can help advance LRL research in handling diverse writing systems and understanding the process of language adaptation.
The remarkable performance of Large language models (LLMs) relies heavily on the availability of abundant high-quality training data. However, the high cost of acquiring annotated data often prevents models from obtaining capabilities to tackle downstream tasks. In this paper, we introduce a novel method, EpiCoDe that boosts model performance in data-scarcity scenarios without extra training. We first employ model extrapolation to enhance a finetuned model with its inferior version, and then adopt contrastive decoding to further reduce predicted errors, by comparing the logit scores given by the extrapolated and the vanilla finetuned model. Experiments across three domains over four different LLMs show that EpiCoDe consistently outperforms existing methods with significant and robust improvement. We also propose a new theoretical framework to reveal the mechanism behind contrastive decoding in data-scarcity scenarios, which further helps better understand the effectiveness of our EpiCoDe.
The rise of Large Language Models (LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM’s lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people.
Current large language models demonstrate deficiencies in understanding low-resource languages, particularly the minority languages in China. This limitation stems from the scarcity of available pre-training data. To address this accessibility challenge, we present MC2, a Multilingual Corpus of Minority Languages in China, which is the largest open-source corpus of its kind so far. MC2 includes four underrepresented languages: Tibetan, Uyghur, Kazakh, and Mongolian. Notably, we focus on the less common writing systems of Kazakh and Mongolian, i.e., Kazakh Arabic script and traditional Mongolian script, respectively, which have been long neglected in previous corpus construction efforts. Recognizing the prevalence of language contamination within existing corpora, we adopt a quality-centric solution for collecting MC2, prioritizing accuracy while enhancing diversity. Furthermore, we underscore the importance of attending to the multiplicity of writing systems, which is closely related to the cultural awareness of the resulting models. The MC2 corpus and related models are made public to the community.
In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike existing MoE approaches that rely on fixed TopK Routing, which activates a predetermined number of experts regardless of the input’s complexity, our method dynamically allocates experts based on the confidence level in expert selection for each input. This allows for more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over Top2 Routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input’s complexity.Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at https://github.com/ZhenweiAn/Dynamic_MoE.
Adapting large language models (LLMs) to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT). However, this CT-then-SFT approach struggles with limited data in the context of low-resource languages, failing to balance language modeling and task-solving capabilities. We thus propose a new model merging solution as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training. We use model merging to develop task-solving LLMs for low-resource languages without SFT data in the target languages. Our experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data. Observing performance saturation in model merging with increasingly more training tokens, we further analyze the merging process and introduce a slack variable to the model merging algorithm to mitigate the loss of important parameters, thereby enhancing model performance. We hope that model merging can benefit more human languages suffering from data scarcity with its higher data efficiency.
The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information. Our code and data are released via https://github.com/kobayashikanna01/probing_MLLM_rep.