Minghao Qin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
Kun Luo | Minghao Qin | Zheng Liu | Shitao Xiao | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in-domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving state-of-the-art performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations—such as parameter sizes, pre-training duration, and alignment processes—on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in-domain accuracy, data efficiency, zero-shot generalization, lengthy retrieval, instruction-based retrieval, and multi-task learning. We evaluate over 15 different backbone LLMs and non-LLMs. Our findings reveal that larger models and extensive pre-training consistently enhance in-domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero-shot generalization, lengthy retrieval, instruction-based retrieval, and multi-task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.