This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MingCheng
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Music performances, characterized by dense and continuous audio as well as seamless audio-visual integration, present unique challenges for multimodal scene understanding and reasoning. Recent Music Performance Audio-Visual Question Answering (Music AVQA) datasets have been proposed to reflect these challenges, highlighting the continued need for more effective integration of audio-visual representations in complex question answering. However, existing Music AVQA methods often rely on dense and unoptimized representations, leading to inefficiencies in the isolation of key information, the reduction of redundancy, and the prioritization of critical samples. To address these challenges, we introduce Sparsify, a sparse learning framework specifically designed for Music AVQA. It integrates three sparsification strategies into an end-to-end pipeline and achieves state-of-the-art performance on the Music AVQA datasets. In addition, it reduces training time by 28.32% compared to its fully trained dense counterpart while maintaining accuracy, demonstrating clear efficiency gains. To further improve data efficiency, we propose a key-subset selection algorithm that selects and uses approximately 25% of MUSIC-AVQA v2.0 training data and retains 70–80% of full-data performance across models.
Visual Question Answering (VQA) is increasingly used in diverse applications ranging from general visual reasoning to safety-critical domains such as medical imaging and autonomous systems, where models must provide not only accurate answers but also explanations that humans can easily understand and verify. Prototype-based modeling has shown promise for interpretability by grounding predictions in semantically meaningful regions for purely visual reasoning tasks, yet remains underexplored in the context of VQA. We present ProtoVQA, a unified prototypical framework that (i) learns question-aware prototypes that serve as reasoning anchors, connecting answers to discriminative image regions, (ii) applies spatially constrained matching to ensure that the selected evidence is coherent and semantically relevant, and (iii) supports both answering and grounding tasks through a shared prototype backbone. To assess explanation quality, we propose the Visual–Linguistic Alignment Score (VLAS), which measures how well the model’s attended regions align with ground-truth evidence. Experiments on Visual7W show that ProtoVQA yields faithful, fine-grained explanations while maintaining competitive accuracy, advancing the development of transparent and trustworthy VQA systems.
Multimodal foundation models (MFMs) have demonstrated significant success in tasks such as visual captioning, question answering, and image-text retrieval. However, these models face inherent limitations due to their finite internal capacity, which restricts their ability to process extended temporal sequences—an essential requirement for comprehensive video and audio analysis. To overcome these challenges, we introduce a specialized cognitive module, temporal working memory (TWM), which aims to enhance the temporal modeling capabilities of MFMs. It selectively retains task-relevant information across temporal dimensions, ensuring that critical details are preserved throughout the processing of video and audio content. The TWM uses a query-guided attention approach to focus on the most informative multimodal segments within temporal sequences. By retaining only the most relevant content, TWM optimizes the use of the model’s limited capacity, enhancing its temporal modeling ability. This plug-and-play module can be easily integrated into existing MFMs. With our TWM, nine state-of-the-art models exhibit significant performance improvements across tasks such as video captioning, question answering, and video-text retrieval. By enhancing temporal modeling, TWM extends the capability of MFMs to handle complex, time-sensitive data effectively. Our code is available at https://github.com/xid32/NAACL_2025_TWM.
Lay paraphrasing aims to make scientific information accessible to audiences without technical backgrounds. However, most existing studies focus on a single domain, such as biomedicine. With the rise of interdisciplinary research, it is increasingly necessary to comprehend knowledge spanning multiple technical fields. To address this, we propose Sci-LoRA, a model that leverages a mixture of LoRAs fine-tuned on multiple scientific domains. In particular, Sci-LoRA dynamically generates and applies weights for each LoRA, enabling it to adjust the impact of different domains based on the input text, without requiring explicit domain labels. To balance domain-specific knowledge and generalization across various domains, Sci-LoRA integrates information at both the data and model levels. This dynamic fusion enhances the adaptability and performance across various domains. Experimental results across twelve domains on five public datasets show that Sci-LoRA significantly outperforms state-of-the-art large language models and demonstrates flexible generalization and adaptability in cross-domain lay paraphrasing.
Rhetorical strategies are central to persuasive communication, from political discourse and marketing to legal argumentation. However, analysis of rhetorical strategies has been limited by reliance on human annotation, which is costly, inconsistent, difficult to scale. Their associated datasets are often limited to specific topics and strategies, posing challenges for robust model development. We propose a novel framework that leverages large language models (LLMs) to automatically generate and label synthetic debate data based on a four-part rhetorical typology (causal, empirical, emotional, moral). We fine-tune transformer-based classifiers on this LLM-labeled dataset and validate its performance against human-labeled data on this dataset and on multiple external corpora. Our model achieves high performance and strong generalization across topical domains. We illustrate two applications with the fine-tuned model: (1) the improvement in persuasiveness prediction from incorporating rhetorical strategy labels, and (2) analyzing temporal and partisan shifts in rhetorical strategies in U.S. Presidential debates (1960–2020), revealing increased use of affective over cognitive argument in U.S. Presidential debates.
Existing text simplification or paraphrase datasets mainly focus on sentence-level text generation in a general domain. These datasets are typically developed without using domain knowledge. In this paper, we release a novel dataset, VTechAGP, which is the first academic-to-general-audience text paraphrase dataset consisting of document-level these and dissertation academic and general-audience abstract pairs from 8 colleges authored over 25 years. We also propose a novel dynamic soft prompt generative language model, DSPT5. For training, we leverage a contrastive-generative loss function to learn the keyword vectors in the dynamic prompt. For inference, we adopt a crowd-sampling decoding strategy at both semantic and structural levels to further select the best output candidate. We evaluate DSPT5 and various state-of-the-art large language models (LLMs) from multiple perspectives. Results demonstrate that the SOTA LLMs do not provide satisfactory outcomes, while the lightweight DSPT5 can achieve competitive results. To the best of our knowledge, we are the first to build a benchmark dataset and solutions for academic-to-general-audience text paraphrase dataset. Models will be public after acceptance.
Existing zero-shot product attribute value (aspect) extraction approaches in e-Commerce industry rely on uni-modal or multi-modal models, where the sellers are asked to provide detailed textual inputs (product descriptions) for the products. However, manually providing (typing) the product descriptions is time-consuming and frustrating for the sellers. Thus, we propose a cross-modal zero-shot attribute value generation framework (ViOC-AG) based on CLIP, which only requires product images as the inputs. ViOC-AG follows a text-only training process, where a task-customized text decoder is trained with the frozen CLIP text encoder to alleviate the modality gap and task disconnection. During the zero-shot inference, product aspects are generated by the frozen CLIP image encoder connected with the trained task-customized text decoder. OCR tokens and outputs from a frozen prompt-based LLM correct the decoded outputs for out-of-domain attribute values. Experiments show that ViOC-AG significantly outperforms other fine-tuned vision-language models for zero-shot attribute value extraction.
Music performances are representative scenarios for audio-visual modeling. Unlike common scenarios with sparse audio, music performances continuously involve dense audio signals throughout. While existing multimodal learning methods on the audio-video QA demonstrate impressive capabilities on general scenarios, they are incapable of dealing with fundamental problems within the music performances: they underexplore the interaction between the multimodal signals in performance, and fail to consider the distinctive characteristics of instruments and music. Therefore, existing methods tend to inaccurately answer questions regarding musical performances. To bridge the above research gaps, first, given the intricate multimodal interconnectivity inherent to music data, our primary backbone is designed to incorporate multimodal interactions within the context of music; second, to enable the model to learn music characteristics, we annotate and release rhythmic and music sources in the current music datasets; third, for time-aware audio-visual modelling, we align the model’s music predictions with the temporal dimension. Our experiments show state-of-the-art effects on the Music AVQA datasets. Our code is available at: https://github.com/xid32/Amuse.
abstract In this article, we describe our approach for the Bacteria Biotopes relation extraction (BB-rel) subtask in the BioNLP Shared Task 2019. This task aims to promote the development of text mining systems that extract relationships between Microorganism, Habitat and Phenotype entities. In this paper, we propose a novel approach for dependency graph construction based on lexical chains, so one dependency graph can represent one or multiple sentences. After that, we propose a neural network model which consists of the bidirectional long short-term memories and an attention graph convolution neural network to learn relation extraction features from the graph. Our approach is able to extract both intra- and inter-sentence relations, and meanwhile utilize syntax information. The results show that our approach achieved the best F1 (66.3%) in the official evaluation participated by 7 teams.