Mina Ghashami


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
AmazUtah_NLP at SemEval-2024 Task 9: A MultiChoice Question Answering System for Commonsense Defying Reasoning
Soumya Mishra | Mina Ghashami
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

The SemEval 2024 BRAINTEASER task represents a pioneering venture in Natural Language Processing (NLP) by focusing on lateral thinking, a dimension of cognitive reasoning that is often overlooked in traditional linguistic analyses. This challenge comprises of Sentence Puzzle and Word Puzzle sub-tasks and aims to test language models’ capacity for divergent thinking. In this paper, we present our approach to the BRAINTEASER task. We employ a holistic strategy by leveraging cutting-edge pre-trained models in multiple choice architecture, and diversify the training data with Sentence and Word Puzzle datasets. To gain further improvement, we fine-tuned the model with synthetic humor/jokes dataset and the RiddleSense dataset which helped augmenting the model’s lateral thinking abilities. Empirical results show that our approach achieve 92.5% accuracy in Sentence Puzzle subtask and 80.2% accuracy in Word Puzzle subtask.