Milena Kraus


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Olelo: A Question Answering Application for Biomedicine
Mariana Neves | Hendrik Folkerts | Marcel Jankrift | Julian Niedermeier | Toni Stachewicz | Sören Tietböhl | Milena Kraus | Matthias Uflacker
Proceedings of ACL 2017, System Demonstrations

2016

pdf bib
BioMedLAT Corpus: Annotation of the Lexical Answer Type for Biomedical Questions
Mariana Neves | Milena Kraus
Proceedings of the Open Knowledge Base and Question Answering Workshop (OKBQA 2016)

Question answering (QA) systems need to provide exact answers for the questions that are posed to the system. However, this can only be achieved through a precise processing of the question. During this procedure, one important step is the detection of the expected type of answer that the system should provide by extracting the headword of the questions and identifying its semantic type. We have annotated the headword and assigned UMLS semantic types to 643 factoid/list questions from the BioASQ training data. We present statistics on the corpus and a preliminary evaluation in baseline experiments. We also discuss the challenges on both the manual annotation and the automatic detection of the headwords and the semantic types. We believe that this is a valuable resource for both training and evaluation of biomedical QA systems. The corpus is available at: https://github.com/mariananeves/BioMedLAT.