Mildness Akomoize


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Howard University - AI4PC at SemEval-2025 Task 3: Logit-based Supervised Token Classification for Multilingual Hallucination Span Identification Using XGBOD
Saurav Aryal | Mildness Akomoize
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

This paper describes our system for SemEval-2025 Task 3, Mu-SHROOM, which focuses on detecting hallucination spans in multilingual LLM outputs. We reframe hallucination detection as a point-wise anomaly detection problem by treating logits as time-series data. Our approach extracts features from token-level logits, addresses class imbalance with SMOTE, and trains an XGBOD model for probabilistic character-level predictions. Our system, which relies solely on information derived from the logits and token offsets (using pretrained tokenizers), achieves competitive intersection-over-union (IoU) and correlation scores on the validation and test set.