Mila Marcheva


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Profiling neural grammar induction on morphemically tokenised child-directed speech
Mila Marcheva | Theresa Biberauer | Weiwei Sun
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

We investigate the performance of state-of-the-art (SotA) neural grammar induction (GI) models on a morphemically tokenised English dataset based on the CHILDES treebank (Pearl and Sprouse, 2013). Using implementations from Yang et al. (2021a), we train models and evaluate them with the standard F1 score. We introduce novel evaluation metrics—depth-of-morpheme and sibling-of-morpheme—which measure phenomena around bound morpheme attachment. Our results reveal that models with the highest F1 scores do not necessarily induce linguistically plausible structures for bound morpheme attachment, highlighting a key challenge for cognitively plausible GI.