Mikhail Sergeevich Durinov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
On the Way to Lossless Compression of Language Transformers: Exploring Cross-Domain Properties of Quantization
Nikita Martynov | Aleksei Goncharov | Gleb Kumichev | Evgeniy Egorov | Stanislav Vladimirovich Pavlov | Mikhail Sergeevich Durinov | Aleksandr Sergeevich Zuev | Egor Anatolievich Filimonov
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Modern Transformers achieved impressive results on various Natural Language Processing tasks over the last few years. The one downside of this success is the size of these models. Huge capacity, which sometimes surpasses billions of parameters, improves generalization abilities, but makes it difficult to employ. Developing field of model compression seeks to reduce the model size and inference latency. This research focuses on one of the compression techniques — Post-Training Quantization. We present a methodology to effectively quantize at least 95% of Transformer weights and corresponding activations to INT8 without any access to task-specific data so the drop in performance does not exceed 0.02%. Furthermore, we provide intriguing observations that reflect cross-domain nature of some of the quantization properties.