Mikhail Kuimov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
SkoltechNLP at SemEval-2022 Task 8: Multilingual News Article Similarity via Exploration of News Texts to Vector Representations
Mikhail Kuimov | Daryna Dementieva | Alexander Panchenko
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our contribution to SemEval 2022 Task 8: Multilingual News Article Similarity. The aim was to test completely different approaches and distinguish the best performing. That is why we’ve considered systems based on Transformer-based encoders, NER-based, and NLI-based methods (and their combination with SVO dependency triplets representation). The results prove that Transformer models produce the best scores. However, there is space for research and approaches that give not yet comparable but more interpretable results.