This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MikelIruskieta
Also published as:
M. Iruskieta
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Although the Basque Education Law mentions that students must finish secondary compulsory education at B2 Basque level and their undergraduate studies at the C1 level, there are no objective tests or tools that can discriminate between these levels. This work presents the first rule-based method to grade written Basque learner texts. We adapt the adult Basque learner curriculum based on the CEFR to create a rule-based grammar for Basque. This paper summarises the results obtained in different classification tasks by combining information formalised through CG3 and different machine learning algorithms used in text classification. Besides, we perform a manual evaluation of the grammar. Finally, we discuss the informa- tiveness of these rules and some ways to further improve assisted text grading and combine rule-based approaches with other approaches based on readability and complexity measures.
In 2021, we organized the second iteration of a shared task dedicated to the underlying units used in discourse parsing across formalisms: the DISRPT Shared Task (Discourse Relation Parsing and Treebanking). Adding to the 2019 tasks on Elementary Discourse Unit Segmentation and Connective Detection, this iteration of the Shared Task included for the first time a track on discourse relation classification across three formalisms: RST, SDRT, and PDTB. In this paper we review the data included in the Shared Task, which covers nearly 3 million manually annotated tokens from 16 datasets in 11 languages, survey and compare submitted systems and report on system performance on each task for both annotated and plain-tokenized versions of the data.
This overview summarizes the main contributions of the accepted papers at the 2019 workshop on Discourse Relation Parsing and Treebanking (DISRPT 2019). Co-located with NAACL 2019 in Minneapolis, the workshop’s aim was to bring together researchers working on corpus-based and computational approaches to discourse relations. In addition to an invited talk, eighteen papers outlined below were presented, four of which were submitted as part of a shared task on elementary discourse unit segmentation and connective detection.
Development of discourse parsers to annotate the relational discourse structure of a text is crucial for many downstream tasks. However, most of the existing work focuses on English, assuming a quite large dataset. Discourse data have been annotated for Basque, but training a system on these data is challenging since the corpus is very small. In this paper, we create the first demonstrator based on RST for Basque, and we investigate the use of data in another language to improve the performance of a Basque discourse parser. More precisely, we build a monolingual system using the small set of data available and investigate the use of multilingual word embeddings to train a system for Basque using data annotated for another language. We found that our approach to building a system limited to the small set of data available for Basque allowed us to get an improvement over previous approaches making use of many data annotated in other languages. At best, we get 34.78 in F1 for the full discourse structure. More data annotation is necessary in order to improve the results obtained with these techniques. We also describe which relations match with the gold standard, in order to understand these results.
In 2019, we organized the first iteration of a shared task dedicated to the underlying units used in discourse parsing across formalisms: the DISRPT Shared Task on Elementary Discourse Unit Segmentation and Connective Detection. In this paper we review the data included in the task, which cover 2.6 million manually annotated tokens from 15 datasets in 10 languages, survey and compare submitted systems and report on system performance on each task for both annotated and plain-tokenized versions of the data.
The DISPRT 2019 workshop has organized a shared task aiming to identify cross-formalism and multilingual discourse segments. Elementary Discourse Units (EDUs) are quite similar across different theories. Segmentation is the very first stage on the way of rhetorical annotation. Still, each annotation project adopted several decisions with consequences not only on the annotation of the relational discourse structure but also at the segmentation stage. In this shared task, we have employed pre-trained word embeddings, neural networks (BiLSTM+CRF) to perform the segmentation. We report F1 results for 6 languages: Basque (0.853), English (0.919), French (0.907), German (0.913), Portuguese (0.926) and Spanish (0.868 and 0.769). Finally, we also pursued an error analysis based on clause typology for Basque and Spanish, in order to understand the performance of the segmenter.
Discourse information is crucial for a better understanding of the text structure and it is also necessary to describe which part of an opinionated text is more relevant or to decide how a text span can change the polarity (strengthen or weaken) of other span by means of coherence relations. This work presents the first results on the annotation of the Basque Opinion Corpus using Rhetorical Structure Theory (RST). Our evaluation results and analysis show us the main avenues to improve on a future annotation process. We have also extracted the subjectivity of several rhetorical relations and the results show the effect of sentiment words in relations and the influence of each relation in the semantic orientation value.
Discourse analysis is necessary for different tasks of Natural Language Processing (NLP). As two of the most spoken languages in the world, discourse analysis between Spanish and Chinese is important for NLP research. This paper aims to present the first open Spanish-Chinese parallel corpus annotated with discourse information, whose theoretical framework is based on the Rhetorical Structure Theory (RST). We have evaluated and harmonized each annotation part to obtain a high annotated-quality corpus. The corpus is already available to the public.
In this work, we have analyzed the effects of negation on the semantic orientation in Basque. The analysis shows that negation markers can strengthen, weaken or have no effect on sentiment orientation of a word or a group of words. Using the Constraint Grammar formalism, we have designed and evaluated a set of linguistic rules to formalize these three phenomena. The results show that two phenomena, strengthening and no change, have been identified accurately and the third one, weakening, with acceptable results.
Due to the huge population that speaks Spanish and Chinese, these languages occupy an important position in the language learning studies. Although there are some automatic translation systems that benefit the learning of both languages, there is enough space to create resources in order to help language learners. As a quick and effective resource that can give large amount language information, corpus-based learning is becoming more and more popular. In this paper we enrich a Spanish-Chinese parallel corpus automatically with part of-speech (POS) information and manually with discourse segmentation (following the Rhetorical Structure Theory (RST) (Mann and Thompson, 1988)). Two search tools allow the Spanish-Chinese language learners to carry out different queries based on tokens and lemmas. The parallel corpus and the research tools are available to the academic community. We propose some examples to illustrate how learners can use the corpus to learn Spanish and Chinese.