This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MikeRoss
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Annotating texts can be a tedious task, especially when texts are noisy. At the root of the issue, guidelines are not always optimized enough to be able to perform the required annotation task. In difficult cases, complex workflows are designed to be able to reach the best possible guidelines. However, crowdsource workers are commonly recruited to go through these complex workflows, limiting the number of iterations over the workflows, and therefore, the possible results because of the slow speed and the high cost of workers. In this paper, our case study, based on the entity recognition problem, suggests that LLMs can help produce guidelines of high quality (inter-annotator agreement going from 0.593 to 0.84 when improving WNUT-17’s guidelines), while being faster and cheaper than crowdsource workers.
Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT’s performance beating the SOTA by 5.6% average joint goal accuracy (JGA). Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We have made the code publicly available at https://github.com/facebookresearch/FnCTOD.
Frame semantic parsing is an important component of task-oriented dialogue systems. Current models rely on a significant amount training data to successfully identify the intent and slots in the user’s input utterance. This creates a significant barrier for adding new domains to virtual assistant capabilities, as creation of this data requires highly specialized NLP expertise. In this work we propose OpenFSP, a framework that allows for easy creation of new domains from a handful of simple labels that can be generated without specific NLP knowledge. Our approach relies on creating a small, but expressive, set of domain agnostic slot types that enables easy annotation of new domains. Given such annotation, a matching algorithm relying on sentence encoders predicts the intent and slots for domains defined by end-users. Experiments on the TopV2 dataset shows that our model trained on these simple labels have strong performance against supervised baselines.