Mike Riess


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
The BRAGE Benchmark: Evaluating Zero-shot Learning Capabilities of Large Language Models for Norwegian Customer Service Dialogues
Mike Riess | Tollef Emil Jørgensen
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)

This study explores the capabilities of open-weight Large Language Models in a zero-shot learning setting, testing their ability to classify the content of customer service dialogues in Norwegian from a single instruction, named the BRAGE benchmark. By comparing results against widely used downstream tasks such as question-answering and named entity recognition, we find that (1) specific instruction models greatly exceed base models on the benchmark, (2) both English and multilingual instruction models outperform the tested Norwegian models of similar sizes, and (3) the difference between base and instruction models is less pronounced than in other generative tasks, suggesting that BRAGE is a challenging benchmark, requiring precise and generalizable instruction-tuning.