Mikala Fleegle


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
The Post-Stroke Speech Transcription (PSST) Challenge
Robert C. Gale | Mikala Fleegle | Gerasimos Fergadiotis | Steven Bedrick
Proceedings of the RaPID Workshop - Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments - within the 13th Language Resources and Evaluation Conference

We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phonemic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER) as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a 9.9% FER / 20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a downstream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word. Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.