Michelle Chen Huebscher


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Decoding a Neural Retriever’s Latent Space for Query Suggestion
Leonard Adolphs | Michelle Chen Huebscher | Christian Buck | Sertan Girgin | Olivier Bachem | Massimiliano Ciaramita | Thomas Hofmann
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Neural retrieval models have superseded classic bag-of-words methods such as BM25 as the retrieval framework of choice. However, neural systems lack the interpretability of bag-of-words models; it is not trivial to connect a query change to a change in the latent space that ultimately determines the retrieval results. To shed light on this embedding space, we learn a “query decoder” that, given a latent representation of a neural search engine, generates the corresponding query. We show that it is possible to decode a meaningful query from its latent representation and, when moving in the right direction in latent space, to decode a query that retrieves the relevant paragraph. In particular, the query decoder can be useful to understand “what should have been asked” to retrieve a particular paragraph from the collection. We employ the query decoder to generate a large synthetic dataset of query reformulations for MSMarco, leading to improved retrieval performance. On this data, we train a pseudo-relevance feedback (PRF) T5 model for the application of query suggestion that outperforms both query reformulation and PRF information retrieval baselines.