Michael London


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
GmSLM : Generative Marmoset Spoken Language Modeling
Talia Sternberg | Michael London | David Omer | Yossi Adi
Findings of the Association for Computational Linguistics: EMNLP 2025

Marmoset monkeys exhibit complex vocal communication, challenging the view that nonhuman primates’ vocal communication is entirely innate, and show similar features of human speech, such as vocal labeling of others and turn-taking. Studying their vocal communication offers a unique opportunity to link it with brain activity—especially given the difficulty of accessing the human brain in speech and language research. Since Marmosets communicate primarily through vocalizations, applying standard LLM approaches is not straightforward. We introduce Generative Marmoset Spoken Language Modeling (GmSLM), an optimized spoken language model pipeline for Marmoset vocal communication. We designed a novel zero-shot evaluation metrics using unsupervised in-the-wild data, alongside weakly labeled conversational data, to assess GmSLM and demonstrate its advantage over a basic human-speech-based baseline. GmSLM generated vocalizations closely matched real resynthesized samples acoustically and performed well on downstream tasks. Despite being fully unsupervised, GmSLM effectively distinguish real from artificial conversations and may support further investigations of the neural basis of vocal communication and provides a practical framework linking vocalization and brain activity. We believe GmSLM stands to benefit future work in neuroscience, bioacoustics, and evolutionary biology. Samples are provided under: https://pages.cs.huji.ac.il/adiyoss-lab/GmSLM/.