Michael Lan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Towards Interpretable Sequence Continuation: Analyzing Shared Circuits in Large Language Models
Michael Lan | Philip Torr | Fazl Barez
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

While transformer models exhibit strong capabilities on linguistic tasks, their complex architectures make them difficult to interpret. Recent work has aimed to reverse engineer transformer models into human-readable representations called circuits that implement algorithmic functions. We extend this research by analyzing and comparing circuits for similar sequence continuation tasks, which include increasing sequences of Arabic numerals, number words, and months. By applying circuit interpretability analysis, we identify a key sub-circuit in both GPT-2 Small and Llama-2-7B responsible for detecting sequence members and for predicting the next member in a sequence. Our analysis reveals that semantically related sequences rely on shared circuit subgraphs with analogous roles. Additionally, we show that this sub-circuit has effects on various math-related prompts, such as on intervaled circuits, Spanish number word and months continuation, and natural language word problems. Overall, documenting shared computational structures enables better model behavior predictions, identification of errors, and safer editing procedures. This mechanistic understanding of transformers is a critical step towards building more robust, aligned, and interpretable language models.