Michael Lambropoulos


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Towards an Implementation of Rhetorical Structure Theory in Discourse Coherence Modelling
Michael Lambropoulos | Shunichi Ishihara
Proceedings of the 22nd Annual Workshop of the Australasian Language Technology Association

In this paper, we combine the discourse coherence principles of Elementary Discourse Unit segmentation and Rhetorical Structure Theory parsing to construct meaningful graph-based text representations. We then evaluate a Graph Convolutional Network and a Graph Attention Network on these representations. Our results establish a new benchmark in F1-score assessment for discourse coherence modelling while also showing that Graph Convolutional Network models are generally more computationally efficient and provide superior accuracy.