Michael Carne


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Feature-Based Forensic Text Comparison Using a Poisson Model for Likelihood Ratio Estimation
Michael Carne | Shunichi Ishihara
Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association

Score- and feature-based methods are the two main ones for estimating a forensic likelihood ratio (LR) quantifying the strength of evidence. In this forensic text comparison (FTC) study, a score-based method using the Cosine distance is compared with a feature-based method built on a Poisson model with texts collected from 2,157 authors. Distance measures (e.g. Burrows’s Delta, Cosine distance) are a standard tool in authorship attribution studies. Thus, the implementation of a score-based method using a distance measure is naturally the first step for estimating LRs for textual evidence. However, textual data often violates the statistical assumptions underlying distance-based models. Furthermore, such models only assess the similarity, not the typicality, of the objects (i.e. documents) under comparison. A Poisson model is theoretically more appropriate than distance-based measures for authorship attribution, but it has never been tested with linguistic text evidence within the LR framework. The log-LR cost (Cllr) was used to assess the performance of the two methods. This study demonstrates that: (1) the feature-based method outperforms the score-based method by a Cllr value of ca. 0.09 under the best-performing settings and; (2) the performance of the feature-based method can be further improved by feature selection.