This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MicahIserman
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
People globally quit their jobs at high rates during the COVID-19 pandemic, yet there is scant research about emotional trajectories surrounding voluntary resignations before or during that era. To explore long-term emotional language patterns before and after quitting a job, we amassed a Reddit sample of people who indicated resigning on a specific day (n = 7,436), each of whom was paired with a comparison user matched on posting history. After excluding people on the basis of low posting frequency and word count, we analyzed 150.3 million words (53.1% from 5,134 target users who indicated quitting) using SALLEE, a dictionary-based syntax-aware tool, and Linguistic Inquiry and Word Count (LIWC) dictionaries. Based on posts in the year before and after quitting, people who had quit their jobs used more sadness and anxiety language than matched comparison users. Lower rates of “I” pronouns and cognitive processing language were associated with less sadness and anxiety surrounding quitting. Emotional trajectories during and before the pandemic were parallel, though pandemic messages were more negative. The results have relevance for strategic self-distancing as a means of regulating negative emotions around major life changes.
In this summary, we discuss our approach to the CLPsych Shared Task and its initial results. For our predictions in each task, we used a recursive partitioning algorithm (decision trees) to select from our set of features, which were primarily dictionary scores and counts of individual words. We focused primarily on Task A, which aimed to predict suicide risk, as rated by a team of expert clinicians (Shing et al., 2018), based on language used in SuicideWatch posts on Reddit. Category-level findings highlight the potential importance of social and moral language categories. Word-level correlates of risk levels underline the value of fine-grained data-driven approaches, revealing both theory-consistent and potentially novel correlates of suicide risk that may motivate future research.
The Computational Linguistics and Clinical Psychology (CLPsych) 2018 Shared Task asked teams to predict cross-sectional indices of anxiety and distress, and longitudinal indices of psychological distress from a subsample of the National Child Development Study, started in the United Kingdom in 1958. Teams aimed to predict mental health outcomes from essays written by 11-year-olds about what they believed their lives would be like at age 25. In the hopes of producing results that could be easily disseminated and applied, we used largely theory-based dictionaries to process the texts, and a simple data-driven approach to model selection. This approach yielded only modest results in terms of out-of-sample accuracy, but most of the category-level findings are interpretable and consistent with existing literature on psychological distress, anxiety, and depression.
Although many studies have distinguished between the social media language use of people who do and do not have a mental health condition, within-person context-sensitive comparisons (for example, analyzing individuals’ language use when seeking support or discussing neutral topics) are less common. Two dictionary-based analyses of Reddit communities compared (1) anxious individuals’ comments in anxiety support communities (e.g., /r/PanicParty) with the same users’ comments in neutral communities (e.g., /r/todayilearned), and, (2) within popular neutral communities, comments by members of anxiety subreddits with comments by other users. Each comparison yielded theory-consistent effects as well as unexpected results that suggest novel hypotheses to be tested in the future. Results have relevance for improving researchers’ and practitioners’ ability to unobtrusively assess anxiety symptoms in conversations that are not explicitly about mental health.
People typically assume that killers are mentally ill or fundamentally different from the rest of humanity. Similarly, people often associate mental health conditions (such as schizophrenia or autism) with violence and otherness - treatable perhaps, but not empathically understandable. We take a dictionary approach to explore word use in a set of autobiographies, comparing the narratives of 2 killers (Adolf Hitler and Elliot Rodger) and 39 non-killers. Although results suggest several dimensions that differentiate these autobiographies - such as sentiment, temporal orientation, and references to death - they appear to reflect subject matter rather than psychology per se. Additionally, the Rodger text shows roughly typical developmental arcs in its use of words relating to friends, family, sex, and affect. From these data, we discuss the challenges of understanding killers and people in general.