Miao He


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RD-MCSA: A Multi-Class Sentiment Analysis Approach Integrating In-Context Classification Rationales and Demonstrations
Haihua Xie | Yinzhu Cheng | Yaqing Wang | Miao He | Mingming Sun
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This paper addresses the important yet underexplored task of **multi-class sentiment analysis (MCSA)**, which remains challenging due to the subtle semantic differences between adjacent sentiment categories and the scarcity of high-quality annotated data. To tackle these challenges, we propose **RD-MCSA** (**R**ationales and **D**emonstrations-based **M**ulti-**C**lass **S**entiment **A**nalysis), an In-Context Learning (ICL) framework designed to enhance MCSA performance under limited supervision by integrating classification rationales with adaptively selected demonstrations. First, semantically grounded classification rationales are generated from a representative, class-balanced subset of annotated samples selected using a tailored balanced coreset algorithm. These rationales are then paired with demonstrations chosen through a similarity-based mechanism powered by a **multi-kernel Gaussian process (MK-GP)**, enabling large language models (LLMs) to more effectively capture fine-grained sentiment distinctions. Experiments on five benchmark datasets demonstrate that RD-MCSA consistently outperforms both supervised baselines and standard ICL methods across various evaluation metrics.