Merlin Humml


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Leveraging High-Precision Corpus Queries for Text Classification via Large Language Models
Nathan Dykes | Stephanie Evert | Philipp Heinrich | Merlin Humml | Lutz Schröder
Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024

We use query results from manually designed corpus queries for fine-tuning an LLM to identify argumentative fragments as a text mining task. The resulting model outperforms both an LLM fine-tuned on a relatively large manually annotated gold standard of tweets as well as a rule-based approach. This proof-of-concept study demonstrates the usefulness of corpus queries to generate training data for complex text categorisation tasks, especially if the targeted category has low prevalence (so that a manually annotated gold standard contains only a small number of positive examples).