Menna Fateen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
In-Context Meta-Learning vs. Semantic Score-Based Similarity: A Comparative Study in Arabic Short Answer Grading
Menna Fateen | Tsunenori Mine
Proceedings of ArabicNLP 2023

Delegating short answer grading to automated systems enhances efficiency, giving teachers more time for vital human-centered aspects of education. Studies in automatic short answer grading (ASAG) approach the problem from instance-based or reference-based perspectives. Recent studies have favored instance-based methods, but they demand substantial data for training, which is often scarce in classroom settings. This study compares both approaches using an Arabic ASAG dataset. We employ in-context meta-learning for instance-based and semantic score-based similarity for reference-based grading. Results show both methods outperform a baseline and occasionally even surpass human raters when grading unseen answers. Notably, the semantic score-based similarity approach excels in zero-shot settings, outperforming in-context meta-learning. Our work contributes insights to Arabic ASAG and introduces a prompt category classification model, leveraging GPT3.5 to augment Arabic data for improved performance.