Mengyuan Lu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Enhancing Legal Expertise in Large Language Models through Composite Model Integration: The Development and Evaluation of Law-Neo
Zhihao Liu | Yanzhen Zhu | Mengyuan Lu
Proceedings of the Natural Legal Language Processing Workshop 2024

Although large language models (LLMs) like ChatGPT have demonstrated considerable capabilities in general domains, they often lack proficiency in specialized fields. Enhancing a model’s performance in a specific domain, such as law, while maintaining low costs, has been a significant challenge. Existing methods, such as fine-tuning or building mixture of experts (MoE) models, often struggle to balance model parameters, training costs, and domain-specific performance. Inspired by composition to augment language models, we have developed Law-Neo, a novel model designed to enhance legal LLMs. This model significantly improves the model’s legal domain expertise at minimal training costs, while retaining the logical capabilities of a large-scale anchor model. Our Law-Neo model outperformed other models in comprehensive experiments on multiple legal task benchmarks, demonstrating the effectiveness of this approach.