Meng Xiao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DP-CRE: Continual Relation Extraction via Decoupled Contrastive Learning and Memory Structure Preservation
Mengyi Huang | Meng Xiao | Ludi Wang | Yi Du
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Continuous Relation Extraction (CRE) aims to incrementally learn relation knowledge from a non-stationary stream of data. Since the introduction of new relational tasks can overshadow previously learned information, catastrophic forgetting becomes a significant challenge in this domain. Current replay-based training paradigms prioritize all data uniformly and train memory samples through multiple rounds, which would result in overfitting old tasks and pronounced bias towards new tasks because of the imbalances of the replay set. To handle the problem, we introduce the DecouPled CRE (DP-CRE) framework that decouples the process of prior information preservation and new knowledge acquisition. This framework examines alterations in the embedding space as new relation classes emerge, distinctly managing the preservation and acquisition of knowledge. Extensive experiments show that DP-CRE significantly outperforms other CRE baselines across two datasets.