Meng Ma


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Adaptive Graph Convolutional Network for Knowledge Graph Entity Alignment
Renbo Zhu | Xukun Luo | Meng Ma | Ping Wang
Findings of the Association for Computational Linguistics: EMNLP 2022

Entity alignment (EA) aims to identify equivalent entities from different Knowledge Graphs (KGs), which is a fundamental task for integrating KGs. Throughout its development, Graph Convolutional Network (GCN) has become one of the mainstream methods for EA. These GCN-based methods learn the representations of entities from two KGs by message passing mechanism and then make alignments via measuring the similarity between entity embeddings. The key idea that GCN works in EA is that entities with similar neighbor structures are highly likely to be aligned. However, the noisy neighbors of entities transfer invalid information, drown out equivalent information, lead to inaccurate entity embeddings, and finally reduce the performance of EA. Based on the Sinkhorn algorithm, we design a reliability measure for potential equivalent entities and propose Adaptive Graph Convolutional Network to deal with neighbor noises in GCN. During the training, the network dynamically updates the adaptive weights of relation triples to weaken the propagation of noises. While calculating entity similarity, it comprehensively considers the self-similarity and neighborhood similarity of the entity pair to alleviate the influence of noises. Furthermore, we design a straightforward but efficient strategy to construct pseudo alignments for unsupervised EA. Extensive experiments on benchmark datasets demonstrate that our framework outperforms the state-of-the-art methods in both supervised and unsupervised settings.