Medea Lo Leggio


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2010

pdf bib
Building Textual Entailment Specialized Data Sets: a Methodology for Isolating Linguistic Phenomena Relevant to Inference
Luisa Bentivogli | Elena Cabrio | Ido Dagan | Danilo Giampiccolo | Medea Lo Leggio | Bernardo Magnini
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

This paper proposes a methodology for the creation of specialized data sets for Textual Entailment, made of monothematic Text-Hypothesis pairs (i.e. pairs in which only one linguistic phenomenon relevant to the entailment relation is highlighted and isolated). The expected benefits derive from the intuition that investigating the linguistic phenomena separately, i.e. decomposing the complexity of the TE problem, would yield an improvement in the development of specific strategies to cope with them. The annotation procedure assumes that humans have knowledge about the linguistic phenomena relevant to inference, and a classification of such phenomena both into fine grained and macro categories is suggested. We experimented with the proposed methodology over a sample of pairs taken from the RTE-5 data set, and investigated critical issues arising when entailment, contradiction or unknown pairs are considered. The result is a new resource, which can be profitably used both to advance the comprehension of the linguistic phenomena relevant to entailment judgments and to make a first step towards the creation of large-scale specialized data sets.