Md Mostafizur Rahman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Entity Profile Generation and Reasoning with LLMs for Entity Alignment
Rumana Ferdous Munne | Md Mostafizur Rahman | Yuji Matsumoto
Findings of the Association for Computational Linguistics: EMNLP 2025

Entity alignment (EA) involves identifying and linking equivalent entities across different knowledge graphs (KGs). While knowledge graphs provide structured information about real-world entities, only a small fraction of these entities are aligned. The entity alignment process is challenging due to heterogeneity in KGs, such as differences in structure, terminology, and attribute details. Traditional EA methods use multi-aspect entity embeddings to align entities. Although these methods perform well in certain scenarios, their effective- ness is often constrained by sparse or incomplete data in knowledge graphs and the limitations of embedding techniques. We propose ProLEA ( Profile Generation and Reasoning with LLMs for Entity Alignment) an entity alignment method that combines large language models (LLMs) with entity embed- dings. LLMs generate contextual profiles for entities based on their properties. Candidate entities identified by entity embedding techniques are then re-evaluated by the LLMs, using its background knowledge and the generated profile. A thresholding mechanism is introduced to resolve conflicts between LLMs predictions and embedding-based alignments. This method enhances alignment accuracy, robustness, and explainability, particularly for complex, het- erogeneous knowledge graphs. Furthermore, ProLEA is a generalized framework. Its profile generation and LLM-enhanced entity align- ment components can improve the performance of existing entity alignment models.