This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MatveyMikhalchuk
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens — especially stopwords, articles, and commas — consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer’s embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of “filler” tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
This paper reveals a novel linear characteristic exclusive to transformer decoders, including models like GPT, LLaMA, OPT, BLOOM and others. We analyze embedding transformations between sequential layers, uncovering an almost perfect linear relationship (Procrustes similarity score of 0.99). However, linearity decreases when the residual component is removed, due to a consistently low transformer layer output norm. Our experiments show that pruning or linearly approximating some of the layers does not impact loss or model performance significantly. Moreover, we introduce a cosine-similarity-based regularization in our pretraining experiments on smaller models, aimed at reducing layer linearity. This regularization not only improves performance metrics on benchmarks like Tiny Stories and SuperGLUE but as well successfully decreases the linearity of the models. This study challenges the existing understanding of transformer architectures, suggesting that their operation may be more linear than previously assumed.
In this study, we present an investigation into the anisotropy dynamics and intrinsic dimension of embeddings in transformer architectures, focusing on the dichotomy between encoders and decoders. Our findings reveal that the anisotropy profile in transformer decoders exhibits a distinct bell-shaped curve, with the highest anisotropy concentrations in the middle layers. This pattern diverges from the more uniformly distributed anisotropy observed in encoders. In addition, we found that the intrinsic dimension of embeddings increases in the initial phases of training, indicating an expansion into higher-dimensional space. This fact is then followed by a compression phase towards the end of training with dimensionality decrease, suggesting a refinement into more compact representations. Our results provide fresh insights to the understanding of encoders and decoders embedding properties.