Matthew K Leonard


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Emergent morpho-phonological representations in self-supervised speech models
Jon Gauthier | Canaan Breiss | Matthew K Leonard | Edward F. Chang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Self-supervised speech models can be trained to efficiently recognize spoken words in naturalistic, noisy environments. However, we do not understand the types of linguistic representations these models use to accomplish this task. To address this question, we study how S3M variants optimized for word recognition represent phonological and morphological phenomena in frequent English noun and verb inflections. We find that their representations exhibit a global linear geometry which can be used to link English nouns and verbs to their regular inflected forms.This geometric structure does not directly track phonological or morphological units. Instead, it tracks the regular distributional relationships linking many word pairs in the English lexicon—often, but not always, due to morphological inflection. These findings point to candidate representational strategies that may support human spoken word recognition, challenging the presumed necessity of distinct linguistic representations of phonology and morphology.