Matteo Paltenghi


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Scaling Parameter-Constrained Language Models with Quality Data
Ernie Chang | Matteo Paltenghi | Yang Li | Pin-Jie Lin | Changsheng Zhao | Patrick Huber | Zechun Liu | Rastislav Rabatin | Yangyang Shi | Vikas Chandra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Scaling laws in language modeling traditionally quantify training loss as a function of dataset size and model parameters, providing compute-optimal estimates but often neglecting the impact of data quality on model generalization.In this paper, we extend the conventional understanding of scaling law by offering a microscopic view of data quality within the original formulation – effective training tokens – which we posit to be a critical determinant of performance for parameter-constrained language models.Specifically, we formulate the proposed term of effective training tokens to be a combination of two readily-computed indicators of text:(i) text diversity and (ii) syntheticity as measured by a teacher model.We pretrained over 200 models of 25M to 1.5B parameters on a diverse set of sampled, synthetic data, and estimated the constants that relate text quality, model size, training tokens, and eight reasoning task accuracy scores.We demonstrated the estimated constants yield +0.83 Pearson correlation with true accuracies, and analyze it in scenarios involving widely-used data techniques such as data sampling and synthesis which aim to improve data quality.