Matrixmxlin Matrixmxlin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm
Yuanzhen Xie | Xinzhou Jin | Tao Xie | Matrixmxlin Matrixmxlin | Liang Chen | Chenyun Yu | Cheng Lei | Chengxiang Zhuo | Bo Hu | Zang Li
Findings of the Association for Computational Linguistics: ACL 2024

In-context learning of large-language models (LLMs) has achieved remarkable success in the field of natural language processing, while extensive case studies reveal that the single-step chain-of-thought prompting approach faces challenges such as attention diffusion and inadequate performance in complex tasks like text-to-SQL. To improve the contextual learning capabilities of LLMs in text-to-SQL, a workflow paradigm method is proposed, aiming to enhance the attention and problem-solving scope of LLMs through decomposition. Specifically, the information determination module for eliminating redundant information and the brand-new prompt structure based on problem classification greatly enhance the model’s attention. Additionally, the inclusion of self-correction and active learning modules greatly expands the problem-solving scope of LLMs, hence improving the upper limit of LLM-based approaches. Extensive experiments conducted on three datasets demonstrate that our approach outperforms other methods by a significant margin. About 2-3 percentage point improvements compared to the existing baseline on the Spider Dev, Spider-Realistic, and Bird Dev datasets and new SOTA results on the Spider Test dataset are achieved. Our code is available on GitHub: https://github.com/FlyingFeather/DEA-SQL.