Mathis Debaillon


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
ISEP_Presidency_University at MLSP 2024 Shared Task: Using GPT-3.5 to Generate Substitutes for Lexical Simplification
Benjamin Dutilleul | Mathis Debaillon | Sandeep Mathias
Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)

Lexical substitute generation is a task where we generate substitutes for a given word to fit in the required context. It is one of the main steps for automatic lexical simplifcation. In this paper, we introduce an automatic lexical simplification system using the GPT-3 large language model. The system generates simplified candidate substitutions for complex words to aid readability and comprehension for the reader. The paper describes the system that we submitted for the Multilingual Lexical Simplification Pipeline Shared Task at the 2024 BEA Workshop. During the shared task, we experimented with Catalan, English, French, Italian, Portuguese, and German for the Lexical Simplification Shared Task. We achieved the best results in Catalan and Portuguese, and were runners-up in English, French and Italian. To further research in this domain, we also release our code upon acceptance of the paper.