This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MathildeDargnat
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We introduce four tasks designed to determine which sentence encoders best capture discourse properties of sentences from scientific abstracts, namely coherence and cohesion between clauses of a sentence, and discourse relations within sentences. We show that even if contextual encoders such as BERT or SciBERT encodes the coherence in discourse units, they do not help to predict three discourse relations commonly used in scientific abstracts. We discuss what these results underline, namely that these discourse relations are based on particular phrasing that allow non-contextual encoders to perform well.
Ce papier présente une étude des caractéristiques prosodiques de marqueurs discursifs en fonction de leur sens pragmatique. L’étude est menée sur trois marqueurs discursifs français (alors, bon, donc) et trois marqueurs anglais (now, so, well) afin de comparer leurs caractéristiques prosodiques dans ces deux langues. Plusieurs paramètres prosodiques ont été calculés sur les marqueurs discursifs, et analysés selon les fonctions pragmatiques de ceux-ci. L’analyse a été effectuée sur plusieurs centaines d’occurrences de marqueurs discursifs extraits de corpus oraux français et anglais. Les résultats montrent que certaines fonctions pragmatiques des marqueurs discursifs amènent leurs propres caractéristiques prosodiques au niveau des pauses et des mouvements de la fréquence fondamentale. On observe également que les fonctions pragmatiques similaires partagent fréquemment des caractéristiques prosodiques similaires à travers les deux langues.
In this paper, we investigate similarities between discourse and argumentation structures by aligning subtrees in a corpus containing both annotations. Contrary to previous works, we focus on comparing sub-structures and not only relations matches. Using data mining techniques, we show that discourse and argumentation most often align well, and the double annotation allows to derive a mapping between structures. Moreover, this approach enables the study of similarities between discourse structures and differences in their expressive power.