This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MathieuSibue
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Code-switching is prevalent in multilingual communities but lacks adequate high-quality data for model development, especially for African languages. To address this, we present AfroCS-xs, a small human-validated synthetic code-switched dataset for four African languages (Afrikaans, Sesotho, Yoruba, isiZulu) and English within a specific domain—agriculture. Using large language models (LLMs), we generate code-switched sentences, including English translations, that are rigorously validated and corrected by native speakers. As a downstream evaluation task, we use this dataset to fine-tune different instruction-tuned LLMs for code-switched translation and compare their performance against machine translation (MT) models. Our results demonstrate that LLMs consistently improve in translation accuracy when fine-tuned on the high-quality AfroCS-xs dataset, highlighting that substantial gains can still be made with a low volume of data. We also observe improvements on natural code-switched and out-of-domain (personal finance) test sets. Overall, regardless of data size and prior exposure to a language, LLMs benefit from higher quality training data when translating code-switched texts in under-represented languages.
Understanding and effectively responding to email communication remains a critical yet complex challenge for current AI techniques, especially in corporate environments. These tasks are further complicated by the need for domain-specific knowledge, accurate entity recognition, and high precision to prevent costly errors. While recent advances in AI, specifically Large Language Models (LLMs), have made strides in natural language understanding, they often lack business-specific expertise required in such settings. In this work, we present Advanced Messaging Platform (AMP), a production-grade AI pipeline that automates email response generation at scale in real-world enterprise settings. AMP has been in production for more than a year, processing thousands of emails daily while maintaining high accuracy and adaptability to evolving business needs.
Enterprise documents such as forms, receipts, reports, and other such records, often carry rich semantics at the intersection of textual and spatial modalities. The visual cues offered by their complex layouts play a crucial role in comprehending these documents effectively. In this paper, we present DocLLM, a lightweight extension to traditional large language models (LLMs) for reasoning over visual documents, taking into account both textual semantics and spatial layout. Our model differs from existing multimodal LLMs by avoiding expensive image encoders and focuses exclusively on bounding box information to incorporate the spatial layout structure. Specifically, the cross-alignment between text and spatial modalities is captured by decomposing the attention mechanism in classical transformers to a set of disentangled matrices. Furthermore, we devise a pre-training objective that learns to infill text segments. This approach allows us to address irregular layouts and heterogeneous content frequently encountered in visual documents. The pre-trained model is fine-tuned using a large-scale instruction dataset, covering four core document intelligence tasks. We demonstrate that our solution outperforms SotA LLMs on 14 out of 16 datasets across all tasks, and generalizes well to 4 out of 5 previously unseen datasets.
The Chartered Financial Analyst (CFA) program is one of the most widely recognized financial certifications globally. In this work, we test a variety of state-of-the-art large language models (LLMs) on mock CFA exams to provide an overview of their financial analysis capabilities using the same evaluation standards applied for human professionals. We benchmark five leading proprietary models and eight open-source models on all three levels of the CFA through challenging multiple-choice and essay questions. We find that flagship proprietary models perform relatively well and can solidly pass levels I and II exams, but fail at level III due to essay questions. Open-source models generally fall short of estimated passing scores, but still show strong performance considering their size, cost, and availability advantages. We also find that using textbook data helps bridge the gap between open-source and proprietary models to a certain extent, despite reduced gains in CFA levels II and III. By understanding the current financial analysis abilities of LLMs, we aim to guide practitioners on which models are best suited for enhancing automation in the financial industry.
The rise of large language models (LLMs) for visually rich document understanding (VRDU) has kindled a need for prompt-response, document-based datasets. As annotating new datasets from scratch is labor-intensive, the existing literature has generated prompt-response datasets from available resources using simple templates. For the case of key information extraction (KIE), one of the most common VRDU tasks, past work has typically employed the template “What is the value for the key?”. However, given the variety of questions encountered in the wild, simple and uniform templates are insufficient for creating robust models in research and industrial contexts. In this work, we present K2Q, a diverse collection of five datasets converted from KIE to a prompt-response format using a plethora of bespoke templates. The questions in K2Q can span multiple entities and be extractive or boolean. We empirically compare the performance of seven baseline generative models on K2Q with zero-shot prompting. We further compare three of these models when training on K2Q versus training on simpler templates to motivate the need of our work. We find that creating diverse and intricate KIE questions enhances the performance and robustness of VRDU models. We hope this work encourages future studies on data quality for generative model training.