Mathieu Godbout


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual Mappings of Word Embeddings: Making the Method Robustly Reproducible as Well
Nicolas Garneau | Mathieu Godbout | David Beauchemin | Audrey Durand | Luc Lamontagne
Proceedings of the Twelfth Language Resources and Evaluation Conference

In this paper, we reproduce the experiments of Artetxe et al. (2018b) regarding the robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. We show that the reproduction of their method is indeed feasible with some minor assumptions. We further investigate the robustness of their model by introducing four new languages that are less similar to English than the ones proposed by the original paper. In order to assess the stability of their model, we also conduct a grid search over sensible hyperparameters. We then propose key recommendations that apply to any research project in order to deliver fully reproducible research.