Matej Kosmajac


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
NLP Workbench: Efficient and Extensible Integration of State-of-the-art Text Mining Tools
Peiran Yao | Matej Kosmajac | Abeer Waheed | Kostyantyn Guzhva | Natalie Hervieux | Denilson Barbosa
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

NLP Workbench is a web-based platform for text mining that allows non-expert users to obtain semantic understanding of large-scale corpora using state-of-the-art text mining models. The platform is built upon latest pre-trained models and open source systems from academia that provide semantic analysis functionalities, including but not limited to entity linking, sentiment analysis, semantic parsing, and relation extraction. Its extensible design enables researchers and developers to smoothly replace an existing model or integrate a new one. To improve efficiency, we employ a microservice architecture that facilitates allocation of acceleration hardware and parallelization of computation. This paper presents the architecture of NLP Workbench and discusses the challenges we faced in designing it. We also discuss diverse use cases of NLP Work- bench and the benefits of using it over other approaches. The platform is under active devel- opment, with its source code released under the MIT license. A website and a short video demonstrating our platform are also available.