Mashael AlAmr


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
WEKA in Forensic Authorship Analysis: A corpus-based approach of Saudi Authors
Mashael AlAmr | Eric Atwell
Proceedings of the 17th International Conference on Natural Language Processing (ICON)

This is a pilot study that aims to explore the potential of using WEKA in forensic authorship analysis. It is a corpus-based research using data from Twitter collected from thirteen authors from Riyadh, Saudi Arabia. It examines the performance of unbalanced and balanced data sets using different classifiers and parameters of word grams. The attributes are dialect-specific linguistic features categorized as word grams. The findings further support previous studies in computational authorship identification.