Masahiro Yamamoto


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
Masahiro Yamamoto | Toshiyuki Sekiya
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper presents our system to the SemEval-2019 Task 9, Suggestion Mining from Online Reviews and Forums. The goal of this task is to extract suggestions such as the expressions of tips, advice, and recommendations. We explore Bidirectional Encoder Representations from Transformers (BERT) focusing on target domain pre-training in Subtask A which provides training and test datasets in the same domain. In Subtask B, the cross domain suggestion mining task, we apply the idea of distant supervision. Our system obtained the third place in Subtask A and the fifth place in Subtask B, which demonstrates its efficacy of our approaches.