Marwan Sayed


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Feature Engineering is not Dead: A Step Towards State of the Art for Arabic Automated Essay Scoring
Marwan Sayed | Sohaila Eltanbouly | May Bashendy | Tamer Elsayed
Proceedings of The Third Arabic Natural Language Processing Conference

Automated Essay Scoring (AES) has shown significant advancements in educational assessment. However, under-resourced languages like Arabic have received limited attention. To bridge this gap and enable robust Arabic AES, this paper introduces the first publicly-available comprehensive set of engineered features tailored for Arabic AES, covering surface-level, readability, lexical, syntactic, and semantic features. Experiments are conducted on a dataset of 620 Arabic essays, each annotated with both holistic and trait-specific scores. Our findings demonstrate that the proposed feature set is effective across different models and competitive with recent NLP advances including LLMs, establishing the state-of-the-art performance and providing strong baselines for future Arabic AES research. Moroever, the resulting feature set offers a reusable and foundational resource, contributing towards the development of more effective Arabic AES systems.